Multi-Class Learning from Label Proportions for Bank Customer Classification
نویسندگان
چکیده
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملLearning from label proportions for SAR image classification
Synthetic aperture radar (SAR) image classification plays a key role in SAR interpretation. Due to the cost and difficulty of truth labeling for SAR images, the newly labeled samples available for image classification are very limited. This paper focuses on defining a new sample labeling method to solve the problem of truth acquisition for training data in SAR image classification. An efficient...
متن کاملOn Learning from Label Proportions
Learning from Label Proportions (LLP) is a learning setting, where the training data is provided in groups, or “bags”, and only the proportion of each class in each bag is known. The task is to learn a model to predict the class labels of the individual instances. LLP has broad applications in political science, marketing, healthcare, and computer vision. This work answers the fundamental quest...
متن کاملExtreme Learning Machine for Multi-Label Classification
Xia Sun 1,*, Jingting Xu 1, Changmeng Jiang 1, Jun Feng 1, Su-Shing Chen 2 and Feijuan He 3 1 School of Information Science and Technology, Northwest University, Xi’an 710069, China; [email protected] (J.X.); [email protected] (C.J.); [email protected] (J.F.) 2 Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA; [email protected] 3 Department o...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2019
ISSN: 1877-0509
DOI: 10.1016/j.procs.2019.12.006